Detecting single-feature polymorphisms using oligonucleotide arrays and robustified projection pursuit

نویسندگان

  • Xinping Cui
  • Jin Xu
  • Rehana Asghar
  • Pascal Condamine
  • Jan T. Svensson
  • Steve Wanamaker
  • Nils Stein
  • Mikeal Roose
  • Timothy J. Close
چکیده

MOTIVATION Genomic DNA was hybridized to oligonucleotide microarrays to identify single-feature polymorphisms (SFP) for Arabidopsis, which has a genome size of approximately 130 Mb. However, that method does not work well for organisms such as barley, with a much larger 5200 Mb genome. In the present study, we demonstrate SFP detection using a small number of replicate datasets and complex RNA as a surrogate for barley DNA. To identify single probes defining SFPs in the data, we developed a method using robustified projection pursuit (RPP). This method first evaluates, for each probe set, the overall differentiation of signal intensities between two genotypes and then measures the contribution of the individual probes within the probe set to the overall differentiation. RESULTS RNA from whole seedlings with and without dehydration stress provided 'present' calls for approximately 75% of probe sets. Using triplicated data, among the 5% of 'present' probe sets identified as most likely to contain at least one SFP probe, at least 80% are correctly predicted. This was determined by direct sequencing of PCR amplicons derived from barley genomic DNA. Using a 5 percentile cutoff, we defined 2007 SFP probes contained in 1684 probe sets by combining three parental genotype comparisons: Steptoe versus Morex, Morex versus Barke and Oregon Wolfe Barley Dominant versus Recessive. AVAILABILITY The algorithm is available upon request from the corresponding author. CONTACT [email protected] SUPPLEMENTARY INFORMATION http://faculty.ucr.edu/~xpcui.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustified MANOVA with applications in detecting differentially expressed genes from oligonucleotide arrays

MOTIVATION Oligonucleotide arrays such as Affymetrix GeneChips use multiple probes, or a probe set, to measure the abundance of mRNA of every gene of interest. Some analysis methods attempt to summarize the multiple observations into one single score before conducting further analysis such as detecting differentially expressed genes (DEG), clustering and classification. However, there is a risk...

متن کامل

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports.

A simple and rapid method for the analysis of genetic polymorphisms has been developed using allele-specific oligonucleotide arrays bound to glass supports. Allele-specific oligonucleotides are covalently immobilized on glass slides in arrays of 3 mm spots. Genomic DNA is amplified by PCR using one fluorescently tagged primer oligonucleotide and one biotinylated primer oligonucleotide. The two ...

متن کامل

Human and mouse oligonucleotide-based array CGH

Array-based comparative genomic hybridization is a high resolution method for measuring chromosomal copy number changes. Here we present a validated protocol using in-house spotted oligonucleotide libraries for array comparative genomic hybridization (CGH). This oligo array CGH platform yields reproducible results and is capable of detecting single copy gains, multi-copy amplifications as well ...

متن کامل

A statistical multiprobe model for analyzing cis and trans genes in genetical genomics experiments with short-oligonucleotide arrays.

Short-oligonucleotide arrays typically contain multiple probes per gene. In genetical genomics applications a statistical model for the individual probe signals can help in separating "true" differential mRNA expression from "ghost" effects caused by polymorphisms, misdesigned probes, and batch effects. It can also help in detecting alternative splicing, start, or termination.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 21 20  شماره 

صفحات  -

تاریخ انتشار 2005